
Sequential algorithm for fast clique percolation

Jussi M. Kumpula,* Mikko Kivelä, Kimmo Kaski, and Jari Saramäki
Department of Biomedical Engineering and Computational Science, Helsinki University of Technology,

P.O. Box 9203, FIN-02015 HUT, Finland
�Received 12 May 2008; revised manuscript received 27 June 2008; published 15 August 2008�

In complex network research clique percolation, introduced by Palla, Derényi, and Vicsek �Nature �London�
435, 814 �2005��, is a deterministic community detection method which allows for overlapping communities
and is purely based on local topological properties of a network. Here we present a sequential clique perco-
lation algorithm �SCP� to do fast community detection in weighted and unweighted networks, for cliques of a
chosen size. This method is based on sequentially inserting the constituent links to the network and simulta-
neously keeping track of the emerging community structure. Unlike existing algorithms, the SCP method
allows for detecting k-clique communities at multiple weight thresholds in a single run, and can simultaneously
produce a dendrogram representation of hierarchical community structure. In sparse weighted networks, the
SCP algorithm can also be used for implementing the weighted clique percolation method recently introduced
by Farkas et al. �New J. Phys. 9, 180 �2007��. The computational time of the SCP algorithm scales linearly
with the number of k-cliques in the network. As an example, the method is applied to a product association
network, revealing its nested community structure.

DOI: 10.1103/PhysRevE.78.026109 PACS number�s�: 89.75.Fb, 89.75.Hc

I. INTRODUCTION

Over the last decade, complex networks have become a
standard framework in the study of complex systems �1,2�.
The simplicity of the network representation, where the in-
teractions and interacting elements are mapped to links and
nodes, respectively, facilitates its use on a number of sys-
tems, ranging from human societies to biological systems.
One prominent feature of complex networks is related to
their mesoscopic properties. Networks often display modular
structure, i.e., are structured in terms of modules or commu-
nities, which are, in general, sets of densely interconnected
nodes. Such communities are often closely related to func-
tional units of the system, for example, groups of individuals
interacting with each other in society �3–6� or functional
modules in metabolic networks �7–9�.

The problem of detecting communities in complex net-
works has received a lot of attention over the last few years.
This problem is twofold: first, there is no unique way to
rigorously define what constitutes a community. For any
definition, several choices have to be made: whether commu-
nities are defined using local or global network properties,
whether nodes can participate in several communities, and
whether the definition allows for weighted networks and
nested hierarchy of communities. Second, any definition is
useful in practice only if it can be reformulated as an algo-
rithm which scales well enough to allow processing net-
works of large enough size. As a result, a large number of
community definitions and their algorithmic implementations
have been proposed over the recent years �10–15�; for a re-
view see Ref. �16�.

In this paper we focus on a fast algorithmic implementa-
tion of the clique percolation �CP� method, originally intro-
duced by Palla et al. �9�. The CP method is deterministic and

it is based solely on local topological properties, defining a
k-clique community as a set of nodes belonging to adjacent
k-cliques. This allows for overlapping communities, i.e.,
nodes having multiple community memberships. The CP
method has earlier been successfully applied to various com-
munity detection problems: detection of protein communities
related to cancer metastasis �17�, analysis of communities in
coauthorship, word association, and protein-interaction net-
works �9�, and time evolution of social groups �6�. Contrary
to existing implementations �18�, which detect k-clique com-
munities for all values of k by first finding the maximal
cliques by an exponentially scaling algorithm �9�, we focus
on rapid detection of communities for a chosen value of k.
Our sequential clique percolation �SCP� algorithm is based
on sequentially inserting links to the network and keeping
track of the emerging community structure. It has specifi-
cally been designed for weighted networks containing hier-
archical communities which are reflected in the link weights.
When links are inserted in decreasing order of weight, the
algorithm allows for detecting k-clique communities at cho-
sen threshold levels in a single run and simultaneously pro-
duces a dendrogram representation of hierarchical commu-
nity structure. In addition, the algorithm can be used for very
fast community detection for unweighted networks.

This paper is structured as follows. First, we present our
algorithm for the simplest, unweighted case, and discuss its
scaling properties. We then move on to detecting nested
communities in weighted networks, applying the algorithm
to a product association network generated from data on sell-
ers and products on an online auction site. Finally, we dis-
cuss a variation of the algorithm which is based on ordering
k-cliques according to their weighted properties, and present
our conclusions.

II. THE SCP ALGORITHM

Let us begin by defining k-cliques and k-clique commu-
nities �9,19�: A k-clique is a set of k nodes which are all*jkumpula@lce.hut.fi

PHYSICAL REVIEW E 78, 026109 �2008�

1539-3755/2008/78�2�/026109�7� ©2008 The American Physical Society026109-1

http://dx.doi.org/10.1103/PhysRevE.78.026109


connected to each other. A k-clique community, or
k-community, is a set of nodes which can be reached by a
series of overlapping k-cliques, where overlap means that the
k-cliques share k−1 nodes.

It should be noted that 2-cliques correspond to pairs of
nodes connected by single links and 1-cliques to single
nodes. Given a network �, the goal is then to find the
k-communities defined as above. In our case, we restrict our-
selves to some specific values of k. Usually choosing k=3 or
k=4 yields useful information, and currently these values of
k have yielded, to our knowledge, the most relevant commu-
nities in practical applications �6,9,17,20�. Our algorithm is
based on detecting and storing k-communities as they
emerge and consolidate when links are sequentially inserted
into the network. One can think of the process as first “re-
moving” each link l from the network �, and then inserting
them back one by one. For unweighted networks, the links
can be inserted in any order, whereas for weighted networks,
it may be desirable to sort the links by weight.

Our algorithm for detecting k-communities consists of
two phases: The first phase of the algorithm detects k-cliques
which form when a link is inserted. These are then fed to the
second phase, which keeps track of formation and merging
of k-communities by processing the k-cliques found. The two
parts of the algorithm are described in detail below.

A. Phase I: Detecting the k-cliques

The first part of the algorithm involves detecting k-cliques
which are formed when a link is inserted into the network.
Suppose now that the inserted link connects nodes vi and v j
�see Fig. 1�. The minimum requirement for a new k-clique to
form is that nodes vi and v j both have degree of at least
k−1. If this is the case, the algorithm proceeds by collecting

all nodes that are neighbors of both nodes Nij =Ni�N j,
where N denotes neighborhood. Now, when the link lij is
added, each �k−2�-clique contained in the set Nij will give
rise to a new k-clique. Therefore, all newly formed k-cliques
are found by detecting all the �k−2�-cliques in the Nij. For
commonly used small clique sizes, this is very fast: for
3-cliques, �k−2�-cliques are single nodes, while for k=4, all
connected pairs of nodes in Nij give rise to a new 4-clique.
Next the k-cliques detected as above are fed one by one into
the second phase of the algorithm.

B. Phase II: Detecting the k-communities

The second phase of the algorithm detects and keeps track
of k-communities which form and merge when new k-cliques
are input from the first phase. Because a k-community is
defined as a set of nodes which all can be reached by a series
of overlapping k-cliques, the crucial issue here is the efficient
detection of overlap between k-cliques. A naive approach
would be to search for shared sets of k−1 nodes between the
newly input clique and all existing cliques. However, the
required computational effort makes this approach unpracti-
cal. Instead, we take advantage of the sequential nature of the
process by “locally” detecting possible overlap of each new
k-clique with existing k-communities and by updating the
community structure accordingly.

Let us begin by noting that the k-community structure of
a network can be represented by a bipartite network, where
the two types of nodes represent k-cliques and
�k−1�-cliques. In this network, a link exists between two
nodes of different type if the k-clique contains the
�k−1�-clique as a subclique. This is illustrated in Fig. 2. The
usefulness of this representation becomes apparent in the fol-
lowing: each connected component in this bipartite network
corresponds to a k-clique community, because by definition
k-cliques belonging to the same community are connected
through shared �k−1�-cliques. Furthermore, connected com-
ponents of the unipartite projections of the bipartite network
�21� similarly correspond to k-clique communities. In the
following, we focus on the �k−1�-clique projection of this
bipartite network. We denote the network resulting from this
projection by �*. In this unipartite network, nodes v* repre-
sent the �k−1�-cliques of �, and links l* exist between nodes
which are subcliques of the same k-clique.

For the sake of clarity, we will first present a “physical”
interpretation of phase II of the algorithm, and then discuss
the algorithmic implementation where certain shortcuts can
be made. Similarly to phase I, where the original network �
is reconstructed link by link, phase II of the SCP algorithm
sequentially builds up �* from the k-cliques brought forward
from phase I. At the same time, it keeps track of the con-
nected components of �* �see Fig. 2, panels �c� and �d��.
These correspond to k-clique communities. When a new
k-clique is input from phase I, its constituent �k−1�-cliques
are first extracted; obviously there are always k of such sub-
cliques. Each of these �k−1� cliques corresponds to a node in
�*. Some of these nodes may already be present, if the cor-
responding �k−1�-cliques have been handled earlier as part
of another k-clique; if not, they are created at this stage.

FIG. 1. �Color online� Schematic illustration of the process for
detecting the k-cliques a newly inserted link completes. The dashed
line depicts the new link, inserted between nodes vi and v j. The
common neighbors of nodes vi and v j are Nij = �vm ,vn ,vp ,vq�. For
detecting newly formed 4-cliques, all pairs of nodes in Nij are
checked to see if they are connected, that is, if they form a 2-clique.
Each 2-clique in the set gives rise to a 4-clique, so in total the link
lij will generate three 4-cliques. In the case k=5, only one 3-clique
is found, which contains the nodes vm, vn, and vp. It will give rise to
a single 5-clique including these nodes in addition to vi and v j.

KUMPULA et al. PHYSICAL REVIEW E 78, 026109 �2008�

026109-2



Finally, links are created between members of this set of k
nodes, and resulting changes in the connected component
structure of �* are recorded.

In the algorithmic implementation, things can be done
somewhat more efficiently, resembling techniques used in
link percolation. The actual network �* does not need to be
constructed, as it is enough to keep track of its connected
components, i.e., the component indices of its nodes v*. This
is equal to link percolation in �*, which can be implemented
for example with disjoint-set forests �22�. At this stage it is
enough to ensure that all �k−1�-clique-nodes corresponding
to the new k clique are marked to belong to the same com-
ponent �the new �k−1�-cliques and their links may either
form a new connected component, merge with an existing
component, or join together at most k existing components�.

The above process is then repeated for each k-clique input
from phase I. Finally, once all links have been inserted
�phase I� and the subsequently formed k-cliques handled
�phase II�, the k-communities of the original network � can
be read from the component indices of v*, assigning nodes
of � to their corresponding communities.

In theory, it would also be possible to keep track of the
connected components of the whole bipartite network or al-
ternatively project the bipartite network to k-cliques instead
of �k−1�-cliques. Both representations contain the same con-
nected components and would thus yield the same k-clique

communities. However, the former alternative is unnecessar-
ily complicated as it involves nodes of two types. The latter
implementation is not as computationally effective as the
current choice in cases where a newly inserted k-clique over-
laps with a large number of existing k-cliques.

C. Scaling of the algorithm

Let us next discuss the performance of the SCP algorithm,
before moving on to its application to weighted network
analysis. Obviously, the computational time required to pro-
cess a network depends on its properties; here, we wish to
investigate the performance as a function of network size and
the number of k-cliques contained in the network. To do this,
we have applied the SCP algorithm on three types of net-
works with adjustable sizes. The first test case, introduced by
Girvan and Newman �3� �GN�, contains built-in communities
and has often been used for similar purposes. The GN net-
works used here consist of groups of 32 nodes, where each
node has on the average 12 links to nodes of the same group
and 4 links to other groups. The network size N is varied by
changing the number of such groups. The second type of
networks �WSN� is generated using a recently published
model of weighted social networks with communities �23�,
using parameter values similar to the original reference. As
the third type, we have used coauthorship networks based on
the cond-mat �CM� archive, constructed similarly to, e.g.,
Ref. �24�. However, in order to vary the network size, we
have used time windows of varying length, such that two
authors are connected if they have published a joint paper
during the time window. It should be noted that although the
WSN networks are inherently weighted, and the CM net-
works can also be considered such, here we consider binary
versions of both types for the performance analysis.

Results in Fig. 3 show that the computational time of the

FIG. 2. �Color online� Illustration of the algorithm for detecting
k-clique communities in a simple example network. Here, k=3. �a�
The original network � consists of three 3-cliques labeled A, B, and
C. 2-cliques, i.e., nodes connected by single links, are labeled with
lower case letters. �b� Bipartite network presentation of the clique
structure. Note that in the bipartite network, the 3-cliques B and C,
which form a 3-clique community, are connected by the shared
2-clique f . Clique A forms another 3-clique community. �c�
3-cliques detected by the first part of the algorithm as links are
sequentially inserted into the network. Each new k-clique is denoted
by dark nodes whereas nodes associated with existing k-cliques
appear gray. �d� Corresponding updates to the �k−1�-clique network
�* as a result of the second part of the algorithm. k-clique commu-
nities correspond to connected components of this network �shaded
areas�.

No. No. No.

No.No.No.

FIG. 3. �Color online� Computation time of the algorithm for
three values of k, as a function of the number of k-cliques �upper
row� and network size �lower row�. Symbols denote different test
networks: GN ���, WSN ���, and CM ���, see text for details. The
solid line is a linear reference. For comparison, we have also plotted
the computational time of the CFINDER 1.21 algorithm for the GN
networks ���. Note that CFINDER always processes all values of k.

SEQUENTIAL ALGORITHM FOR FAST CLIQUE PERCOLATION PHYSICAL REVIEW E 78, 026109 �2008�

026109-3



SCP algorithm grows practically linearly as a function of the
number of k-cliques for all networks. This is as expected,
because the computational time of the algorithm is domi-
nated by the process of detecting k-cliques and processing
them for overlap, such that each k-clique is processed exactly
twice. This is also reflected in the network size dependence
of the required computational time for both types of model
networks �GN, WSN�. For these networks the local structure
remains essentially unchanged as the network grows and it
appears that the number of k-cliques grows linearly with N.
However, for the CM networks, the computational time
grows faster than linearly as a function of network size. This
is because the CM network is a projection of a bipartite
author-publication network containing large cliques that
grow in size when N increases. The problem is, as pointed
out by Palla et al. �9�, that the number of subcliques of size
k within a clique of size s is � s

k �. In the limit s�k this leads
to

�s

k
� 	

sk

k!
. �1�

Hence for large s, the number of k-cliques grows as kth
power of s, meaning that for networks containing large
cliques the SCP method performs best for rather small values
of k. For example, when k�10 the analysis of the largest
CM networks becomes extremely slow with the SCP method.
However, when very large cliques are not abundant in the
network under investigation, the SCP algorithm is very fast
even for networks of large size. For example, detecting
4-clique communities in a mobile phone call network having
approximately four million nodes and six million links �25�
takes approximately one minute on a standard desktop com-
puter. Thus, for networks where cliques are on the average
fairly small, the main practical limitations of this algorithm
seem to be related to the memory consumption as it requires
keeping all �k−1�-cliques of the network in memory.

Finally, let us compare the performance of the SCP algo-
rithm and the existing method �CFINDER 1.21, �9��. Evidently,
this comparison is somewhat complicated, as CFINDER simul-
taneously processes all clique sizes, whereas the SCP algo-
rithm is by construction limited to a single value of k. Nev-
ertheless, summing up the processing times for all values of
k, we have observed that for the GN network, the processing
time of the SCP algorithm scales linearly with network size,
whereas CFINDER 1.21 appears to scale as N2 �see Fig. 3�.
However, for denser networks, such as the CM network, the
comparison becomes somewhat meaningless as both meth-
ods become extraordinarily slow. This is due to the very
large number of k-cliques as discussed above. It should be
noted here that the unpublished beta version, CFINDER 2.0b,
appears to scale far better than CFINDER 1.21 and seems to be
able to deal with very large cliques. However, the key
strength of the SCP algorithm is its speed in weighted net-
work analysis: it is able to process multiple weight thresh-
olds in a single run �see Sec. III A below�. With the earlier
method, this quickly becomes unfeasible, as the networks
corresponding to each threshold have to be separately input
and analyzed. Thus, even if the processing time of both

methods would be exactly the same for a single network,
obtaining the k-community structure for 100 weight thresh-
olds would be 100 times faster with the SCP algorithm. An-
other important difference is the inherent ability of the SCP
method to produce a dendrogram of nested k-communities;
this feature does not exist in earlier implementations �again,
see Sec. III A below�.

III. SCP FOR WEIGHTED NETWORKS

A. Thresholding and nested communities

Let us move on to weighted networks, where the concept
of community structure becomes somewhat more compli-
cated. Perhaps only for the very simplest cases, where the
networks are sparse, weights can be disregarded, such that
communities are associated with the pure topology of the
network. However, this is usually not feasible, as weighted
networks can be rather dense, even to such an extent that the
topology no longer matters, as any modular structure is en-
coded in the link weights only. This is the case, for example,
in stock interaction networks �26�, whose natural representa-
tion is a weight matrix with only nonzero elements.

For such networks, one is essentially left with two
choices: the first is to threshold the network, such that links
whose weights are considered insignificantly small are re-
moved and communities in the resulting sparse network are
detected. It is evident that choosing the right threshold is a
nontrivial task; in fact, for many cases it may be better to
take a multiresolution approach, by investigating the result-
ing community structure for a range of thresholds. Another
option is to consider the weights directly when defining what
constitutes a community, and to apply a method which is
based on this definition �20,26�.

In the original formulation of the clique percolation algo-
rithm, Palla et al. suggested a rule for choosing a weight
threshold w* for the network, such that the resulting
k-community structure would be as diverse as possible �9�.
More specifically, w* is chosen such that the largest commu-
nity is twice the size of the second largest one, i.e., below the
percolation threshold where a giant k-clique community ap-
pears. For the original implementation, the algorithm had to
be run from the beginning for each threshold level. One of
the benefits of our approach is that it allows for obtaining
k-communities at any point of the process of adding links,
which is just thresholding done in reverse: If the links of the
original network � are sorted and processed in descending
order of weight, the algorithm yields for each link the
k-community structure of � thresholded by the weight of the
link. This is very useful for selecting the threshold, as all
threshold values can be processed in a single run. Note that
for dense networks, sweeping through the entire range of
weights is not needed: the algorithm can be stopped before
�or immediately after� communities are entirely “smeared
out” by a giant community. Stopping the algorithm in time
can greatly reduce the workload in dense networks as usually
only a small fraction of all links need to be added before the
percolating component is found, after which adding more
links does not increase the number of nodes in the commu-
nities, but only makes the community denser in cliques.

KUMPULA et al. PHYSICAL REVIEW E 78, 026109 �2008�

026109-4



However, by focusing on a single threshold weight, valu-
able information of the community structure contained in the
correlations between weights can be lost. Often, the modular
structure of networks is inherently hierarchical—denser and
stronger communities are nested inside weaker ones, which
may further be embedded inside even weaker ones
�15,27–29�. It is then natural to investigate this nestedness by
considering the development of the community structure
when the weight threshold is swept through the range of
interest. Evidently, this requires book-keeping of the emer-
gence and merging of communities as the threshold is pro-
gressively lowered. For the SCP algorithm, this book-
keeping is inbuilt: all necessary information can directly be
recorded in phase II of the algorithm. In particular, it is easy
to store when a k-community appears, which nodes belong to
it, how its size grows as new k-cliques join it, and when it
merges with other k-communities. It should be stressed here
that this is a genuine advantage: separately detecting the
community structure for each threshold and then tracking the
formation and merging of communities would be very diffi-
cult and time consuming.

This information on the nested community structure is
best visualized with a dendrogram, which is a common pre-
sentation format in agglomerative community detection �see,
e.g., Ref. �29��. In a dendrogram, horizontal lines correspond
to communities, and a branching of the lines denotes com-
munities merging. Choosing a single weight threshold would
correspond to taking a vertical slice of the dendrogram. Fig-
ure 4 shows two examples of the nested community structure
within a product category network, for k=3 and k=4. This
network is constructed from online trading data, downloaded
from the Finnish auction website Huuto.net. In this network,
nodes correspond to product categories �N=345�, and the
weights of links connecting two categories to the number of
individuals who have been trading in both of them. This
network is very dense, the number of links is 52536, corre-
sponding to a link density �=0.89, and thus the network can
be considered as a suitable test case for the evolution of
community structure while sweeping the threshold weight. In
Fig. 4 the labels associated with each community describe
their dominant product categories. Although the dendro-

grams formed by using k=3 and k=4 are not identical, sev-
eral similar communities appear for both values. From the
commonsensical point of view, these appear natural: elec-
tronic devices and computer components merge to a single
community, as do music and movies, and children’s and
women’s clothing.

Often it is not possible nor meaningful to include all
k-communities in such a visualization: the outcome would be
too complicated to be interpreted by visual inspection. The
main problem are the numerous single k-cliques, which
merge to larger k-communities. For any analysis of the den-
drogram structure the entire data should be used but for vi-
sualization purposes it is useful to threshold the dendrogram
such that only k-communities which are larger than a thresh-
old size Nth appear in the plot. In Fig. 4 k-communities of
sizes larger than k are displayed, i.e., Nth=k.

B. Weighted k-clique percolation

As pointed out above, considering the weights in the defi-
nition of what constitutes a community is an alternative to
simply discarding low-weight links. Such an extension for
clique percolation has recently been introduced by Farkas et
al. in Ref. �20�. In this method, each k-clique is assigned a
“weight,” which equals the intensity �30� of its edge weights.
The intensity is defined as the geometric mean of the link
weights in the k-clique. The community structure is then ob-
tained by choosing an intensity threshold I* and taking into
account only those k-cliques whose intensity is above I*.

For our SCP algorithm, a simple modification allows for
weighted clique percolation according to the above scheme.
To achieve this, instead of building the k-communities simul-
taneously as the k-cliques emerge, all links are first inserted
to the network and the resulting k-cliques are stored. Then,
the intensity of each of these k-cliques is calculated, and the
cliques are sorted with respect to the intensity. Finally, the
sorted k-cliques are processed one by one by the second part
of the algorithm, until the intensity threshold is reached.
Multiple thresholding levels are obtained as before, but now
with respect to k-clique intensities, and a dendrogram can be
constructed similarly. Note that in addition to intensity, any

FIG. 4. Dendrogram visualization of the nested k-community structure of the trading categories of the Finnish online auction site
Huuto.net for k=3 �a� and k=4 �b�.

SEQUENTIAL ALGORITHM FOR FAST CLIQUE PERCOLATION PHYSICAL REVIEW E 78, 026109 �2008�

026109-5



other measure describing the “weight” of the cliques can be
used, e.g., if homogeneous cliques are sought for, one could
also take the clique coherence �30� into account. Sorting
cliques according to their intensities was briefly described by
Farkas et al. in Ref. �20�; their construction appears some-
what similar to ours as the intensity-sorted cliques are
handled in succession, and the method for obtaining overlap-
ping k-communities seems to correspond to building the
whole bipartite network between k- and �k−1�-cliques.

The above procedure requires keeping all k-cliques in the
memory in addition to the �k−1�-cliques. In most cases the
loss of speed is minimal, as the additional computational
load is related to the memory consumption and sorting of
cliques, which can be done in log-linear time. However, a
possible problem related to the SCP algorithm—and the
weighted clique percolation method, in general—is that all
k-cliques have to be processed individually, and their number
can be very large in dense networks as discussed in Sec. II C.
When the link weight thresholding procedure of Sec. III A is
applied, this problem can be somewhat circumvented by sim-
ply stopping the algorithm as soon as enough links have been
inserted for obtaining the community structure at the desired
“resolution.” However, for intensity-based clique percolation
this cannot be done, as all k-cliques have to be detected and
sorted first.

IV. CONCLUSIONS

We have introduced a sequential clique percolation algo-
rithm for detecting k-clique communities in a network by
sequentially inserting its edges and keeping track of the
emerging community structure �31�. This algorithm has spe-
cifically been designed for �dense� weighted networks, where
weight-based thresholding of either the links or the cliques
formed by them is necessary for obtaining meaningful infor-

mation on the structure. By applying the algorithm on test
networks, we have shown that the computational time re-
quired to process a network scales linearly with the number
of k-cliques in the network. The sequential nature of the
algorithm allows run-time construction of a dendrogram pre-
sentation of the nested hierarchical k-community structure,
which we have illustrated using a product category network.

The main tradeoff for our algorithm is that it detects the
k-communities for a chosen value of k with multiple weight
thresholds in a single run, instead of obtaining
k-communities for all values of k with a single weight thresh-
old as is done in the maximal clique algorithms. Hence the
SCP algorithm can be considered complementary to earlier
presented solutions �9�. Neither of these algorithms can be
argued to be strictly better or faster than the other as their
performance depends heavily on the network topology and
other aspects of the problem they are solving. The SCP al-
gorithm is particularly useful when a small clique size k is
used and when multiple weight threshold levels need to be
studied, or no prior knowledge of the proper threshold level
of a dense weighted network is at hand. The algorithm can
also be considered as a reasonable choice for very large
sparse networks as suggested by the short computation times
of the community structure of a mobile telephony network
having millions of nodes and links.

ACKNOWLEDGMENTS

We thank J. Hyvönen and J. Kertész for useful discus-
sions, and acknowledge programming assistance by J.
Hyvönen. We acknowledge support by the Academy of Fin-
land, the Finnish Center of Excellence program 2006-2011,
Project No. 213470. J.M.K. is partly supported by the GETA
graduate school. J.S. and M.K. acknowledge support by the
European Commission NEST Pathfinder initiative on Com-
plexity through project EDEN �Contract No. 043251�.

�1� G. Caldarelli, Scale-Free Networks: Complex Webs in Nature
and Technology �Oxford University Press, New York, 2007�.

�2� M. E. J. Newman, A. L. Barabási, and D. J. Watts, The Struc-
ture and Dynamics of Networks �Princeton University Press,
Princeton, 2006�.

�3� M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A.
99, 7821 �2002�.

�4� D. Lusseau and M. E. J. Newman, Proc. R. Soc. London, Ser.
B 271, 477 �2004�.

�5� A. Arenas, L. Danon, A. Díaz-Guilera, P. M. Gleiser, and R.
Guimerá, Eur. Phys. J. B 38, 373 �2004�.

�6� G. Palla, A.-L. Barabási, and T. Vicsek, Nature �London� 446,
664 �2007�.

�7� P. Holme, M. Huss, and H. Jeong, Bioinformatics 19, 532
�2003�.

�8� R. Guimerá and L. A. N. Amaral, Nature �London� 433, 895
�2005�.

�9� G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature �London�
435, 814 �2005�.

�10� M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113

�2004�.
�11� M. E. J. Newman, Eur. Phys. J. B 38, 321 �2004�.
�12� F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Pa-

risi, Proc. Natl. Acad. Sci. U.S.A. 101, 2658 �2004�.
�13� M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci. U.S.A.

104, 7327 �2007�.
�14� V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre,

e-print arXiv:0803.0476.
�15� A. Lancichinetti, S. Fortunato, and J. Kertész, e-print

arXiv:0802.1218.
�16� S. Fortunato and C. Castellano, e-print arXiv:0712.2716.
�17� P. F. Jonsson, T. Cavanna, D. Zicha, and P. A. Bates, BMC

Bioinf. 7, 2 �2006�.
�18� B. Adamcsek, G. Palla, I. J. Farkas, I. Derényi, and T. Vicsek,

Bioinformatics 22, 1021 �2006�.
�19� I. Derényi, G. Palla, and T. Vicsek, Phys. Rev. Lett. 94,

160202 �2005�.
�20� I. Farkas, D. Ábel, G. Palla, and T. Vicsek, New J. Phys. 9,

180 �2007�.

KUMPULA et al. PHYSICAL REVIEW E 78, 026109 �2008�

026109-6



�21� In a unipartite projection, the bipartite network is collapsed
such that only nodes of one type are left, each pair connected
by a link if they are both connected to the same node�s� of the
other type in the original bipartite network.

�22� T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms �McGraw-Hill, New York, 1990�.

�23� J. M. Kumpula, J. P. Onnela, J. Saramäki, K. Kaski, and J.
Kertész, Phys. Rev. Lett. 99, 228701 �2007�.

�24� M. E. J. Newman, Phys. Rev. E 64, 016131 �2001�.
�25� J. P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K.

Kaski, J. Kertész, and A. L. Barabási, Proc. Natl. Acad. Sci.
U.S.A. 104, 7332 �2007�.

�26� T. Heimo, J. M. Kumpula, K. Kaski, and J. Saramäki, e-print
arXiv:0804.3457.

�27� A. Clauset, C. Moore, and M. Newman, Lect. Notes Comput.
Sci. 4503, 1 �2007�.

�28� M. Sales-Pardo, R. Guimerá, A. A. Moreira, and L. A. N.
Amaral, Proc. Natl. Acad. Sci. U.S.A. 104, 15224 �2007�.

�29� A. Clauset, C. Moore, and M. E. J. Newman, Nature �London�
453, 98 �2008�.

�30� J. P. Onnela, J. Saramäki, J. Kertész, and K. Kaski, Phys. Rev.
E 71, 065103 �2005�.

�31� A Python implementation of the algorithm can be found online
at http://www.lce.hut.fi/~mtkivela/kclique.html

SEQUENTIAL ALGORITHM FOR FAST CLIQUE PERCOLATION PHYSICAL REVIEW E 78, 026109 �2008�

026109-7


